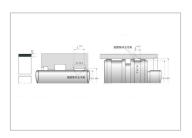

耐磨带和耐磨环产品系列

CGS耐磨环-CGS010020CGS1010020CGS2010020


参数信息:

导向环系列CGS:

d f8/h9:	20
D H8:	25
L:	5.6
C/S:	2.5
CGS 零件号:	CGS01002 0
CG\$1 零件号:	CG\$10100 20

CGS2 零件号: CGS20100 20

介绍:

CGS系列

耐磨环

关于导向环

导向环的作用,是在液压油缸运动中,引导活塞和活塞杆的方向,提供横向支撑,并且防止金属与金属 之间的摩擦。

导向环的特性:

低摩擦系数

高耐磨性

吸收过量的侧向负载

SILVER CGS耐磨环【CGS010020|CGS1010020|CGS2010020|】--PDF

杭州西爱福密封技术有限公司

product.cfseals.com.cn

TEL:0571-85830111 85831666

抑制抖动

灵活性强

应用领域广泛

便于安装

耐高温

CGS导向环

材质

材料: 合成聚酯纤维,添加PTFE超细粉末

编号: H2053 颜色: 天蓝色

特性:

低摩擦系数

高负载

卓越的化学性能

水溶液中无电化学腐蚀

无磁性/低吸水性

无粘滑

CGS1导向环

材质

材料:强化织物酚醛复合材料,添加石墨

此种材料具有卓越的热稳定性和耐磨性。

编号: H2057 颜色: 黑色

特性: 高耐磨性 高负载

适用于高温环境 卓越的耐冲击性能 卓越的耐化学性

CGS2导向环

材质

材料: 强化织物酚醛复合材料

编号: H2059 颜色: 浅褐色

特性:

卓越的机械强度 尺寸稳定性好 卓越的化学性能

易加工

液压油缸导向环的标准材料

表面质量

表面粗糙度	R _{max}	Ra
滑动表面	≤2.5 μm	0.05-0.3 µm
沟槽表面	≤6.3 µm	≤1.6 µm
沟槽側面	≤15 µm	≤3.0 µm

轮廓支撑长度率 50-95%

倒角宽度

d	С
0-60	4
60-120	5
120-180	6
180-250	8
250-400	10

机械性能

19.1	it .	单位	CGS	CGS1	CG52
耐压强度	静态	MPa	290	344	256
MINICOS INC.	动态	MPa	80	80	54
冲击强度	IZOD	J/m2	66	50	16
密	变	g/cm3	1.21	1.40	1.31
材料水溶胀性	(登厚%) 1)	%	80.0	80.0	0.32
硬度	海氏	HRM	100	115	105
最大約	沙坡	m/s	1.0	1.0	1.0
and a	最大值	*C	120	200	130
温度	最小值	°C	-40	-40	-40
	10-4°C	7~8	2~3	3-4	
	111 115 115	10-4°C	5 ~ 6	1~2	2-3

24小时浸没在20°C的水中(壁厚2.5毫米)

导向环的设计

导向环的切口类型和标准切割间隙 标准切口是斜切。阶梯型切口一般用于缓冲环,能 有效降低密封承受的极限压力。另一种切口-直切, 可根据客户需求提供。表1是标准切割间隙,图1是 切口类型。

导向环外径	切口间隙 (Z)	
ΦD≤25	1.0mm	
26≤Φ≤100	2.0mm	
ΦD≥101	2.5mm	

表1: 标准切割间隙

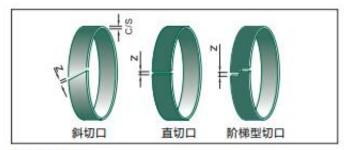


图1: 切口类型

导向环标准

表2是导向环的厚度和宽度的公差标准,以及内外径的 倒角。其他的参数,可根据客户的需求提供。

	公差标准
厚度(c/s)	0 ~ -0.08 mm
宽度(h)	-0.10 ~ -0.20 mm

表2: 导向环公差

如何计算导向环的宽度

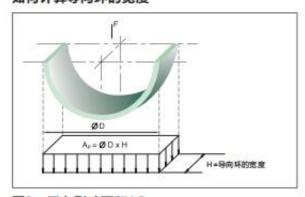


图2: 压力影响面积AP

在计算导向带宽度之前,首先应估算导向带将承 受的侧向负载,上图中的压力影响面积是指侧向 负载产生的径向压力作用的面积AP,可以采用以 下公式计算:

$$AP = \Phi D \times H$$

公式中的D是指活塞导向部分的外径 (或者活塞 杆导向部分的内径), H是导向环的宽度。

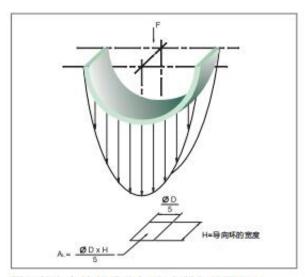


图3: 径向力的负载分布F和有效负载面积AL

请注意,在这个区域内,压力并不是均衡分布的,而是呈现出如图2的不规则分布。压力负载面积AL可采用下列公式来估算:

$$A_L = \frac{A_P}{5} = \frac{\Phi D \times H}{5}$$

如何计算径向力允许值?只需用负载面积AL乘 以材料的容许负载值q,再除以预期安全因素Fs:

$$F = \frac{A_1 \times q}{F_S} = \frac{\Phi D \times H \times q}{5 \times F_S}$$

如何正确计算导向环的宽度H? 必须先了解径向力, 再套用以下公式, 进行计算:

$$\left[H = \frac{5 \times F}{\Phi D \times q} \times Fs \right]$$